Zollege is here for to help you!!
Need Counselling
GATE logo

GATE 2020 Instrumentation Engineering Syllabus

OverviewMock TestSyllabusQuestion PaperspreparationAnswer KeyCutoffExam DatesNewsQ&A
Vivek Bansal's profile photo

Vivek Bansal

Content Curator | Updated On - Jul 19, 2019

Instrumentation engineering is the branch of engineering that specialises on the principle and operation of measuring instruments that are used in fields of design, configuration of automated systems in electrical, pneumatic domains, etc. GATE conducting body, IIT Delhi has released the Instrumentation Engineering syllabus for all the candidates. This will help candidates to prepare in a better way for the exam.

It is one of the brightest fields in engineering today. GATE 2020 will held from February 01, 02, 08 and 09, 2020. GATE Instrumentation Engineering (IN) paper has 65 questions. Exam Duration is 3 hours.

Candidates appearing GATE Instrumentation Engineering paper must be aware about the GATE syllabus and pattern for the exam. In this article, we are discussing the paper pattern and complete syllabus for Instrumentation Engineering.

Direct link to download GATE Instrumentation Engineering (IN) syllabus PDF 


GATE 2020 Syllabus for Instrumentation Engineering

The GATE 2020 syllabus for Instrumentation Engineering divided into 9 sections with topics that need to be covered. Candidate can check the Syllabus for GATE Instrumentation Engineering in detailed as given below:

Section 1: Engineering Mathematics

Topics Sub Topics
Linear Algebra Matrix algebra, systems of linear equations, Eigen values and Eigen vectors
Analysis of complex variables Analytic functions, Cauchy’s integral theorem and integral formula, Taylor’s and Laurent’s series, residue theorem, solution of integrals.
Calculus Functions of single variable, limits, continuity and differentiability, mean value theorem, chain rule, partial derivatives, maxima and minima, gradient, divergence and curl, directional derivatives. Integration, Line, surface and volume integrals. Theorems of Stokes, Gauss and Green.
Differential Equations First order equation (linear and nonlinear), higher order linear differential equations with constant coefficients, method of variation of parameters, Cauchy’s and Euler’s equations, initial and boundary value problems, solution of partial differential equations: variable separable method.
Probability and Statistics Sampling theorems, conditional probability, mean, median, mode and standard deviation, random variables, discrete and continuous distributions: normal, Poisson and binomial distributions.
Numerical Methods Matrix inversion, solutions of non-linear algebraic equations, iterative methods for solving differential equations, numerical integration, regression and correlation analysis.

Instrumentation Engineering

Section 2: Electrical Circuits

Voltage and current sources: independent, dependent, ideal and practical; v-i relationships of resistor, inductor, mutual inductor and capacitor; transient analysis of RLC circuits with dc excitation.

Kirchoff’s laws, mesh and nodal analysis, superposition, Thevenin, Norton, maximum power transfer and reciprocity theorems

Peak-, average- and rms values of ac quantities; apparent-, active- and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and C elements.

One-port and two-port networks, driving point impedance and admittance, open-, and short circuit parameters.

Section 3: Signals and Systems

Periodic, aperiodic and impulse signals; Laplace, Fourier and z-transforms; transfer function, frequency response of first and second order linear time invariant systems, impulse response of systems; convolution, correlation. Discrete time system: impulse response, frequency response, pulse transfer function; DFT and FFT; basics of IIR and FIR filters.

Section 4: Control Systems

Feedback principles, signal flow graphs, transient response, steady-state-errors, Bode plot, phase and gain margins, Routh and Nyquist criteria, root loci, design of lead, lag and lead-lag compensators, state-space representation of systems; time-delay systems; mechanical, hydraulic and pneumatic system components, synchro pair, servo and stepper motors, servo valves; on-off, P, P-I, P-I-D, cascade, feedforward, and ratio controllers.

Section 5: Analog Electronics

Characteristics and applications of diode, Zener diode, BJT and MOSFET; small signal analysis of transistor circuits, feedback amplifiers. Characteristics of operational amplifiers; applications of opamps: difference amplifier, adder, subtractor, integrator, differentiator, instrumentation amplifier, precision rectifier, active filters and other circuits. Oscillators, signal generators, voltage controlled oscillators and phase locked loop.

Section 6: Digital Electronics

Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS. Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flipflops, shift registers, timers and counters; sample-and-hold circuit, multiplexer, analog-todigital (successive approximation, integrating, flash and sigma-delta) and digital-toanalog converters (weighted R, R-2R ladder and current steering logic). Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, 8-bit microprocessor and microcontroller: applications, memory and input-output interfacing; basics of data acquisition systems

Section 7: Measurements

SI units, systematic and random errors in measurement, expression of uncertainty - accuracy and precision index, propagation of errors. PMMC, MI and dynamometer type instruments; dc potentiometer; bridges for measurement of R, L and C, Q-meter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true rms meters, voltage and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding and grounding.

Section 8: Sensors and Industrial Instrumentation

Resistive-, capacitive-, inductive-, piezoelectric-, Hall effect sensors and associated signal conditioning circuits; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (differential pressure, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire), thermistor, pyrometer and semiconductor); liquid level, pH, conductivity and viscosity measurement.

Section 9: Communication and Optical Instrumentation

Amplitude- and frequency modulation and demodulation; Shannon's sampling theorem, pulse code modulation; frequency and time division multiplexing, amplitude-, phase-, frequency-, pulse shift keying for digital modulation; optical sources and detectors: LED, laser, photo-diode, light dependent resistor and their characteristics; interferometer: applications in metrology; basics of fiber optic sensing.


Syllabus Of Other Papers

*The article might have information for the previous academic years, please refer the official website of the exam.

Ask your question