The Mechanical Engineering Technology program strives to prepare graduates who:

  • Successfully establish themselves as professionals within a diverse range of engineering technology activities
  • Conduct themselves ethically in all activities
  • Contribute to industry and society, through service activities and professional organizations
  • Advance in their profession, maintain currency within the profession, and demonstrate leadership qualities

The undergraduate Mechanical Engineering Technology program is designed with an applications-oriented structure. Many of the technical science courses have an accompanying laboratory component providing hands-on activities, as well as emphasizing measurement, data collection and analysis, documentation, and written/oral report preparation/presentation.
The program aims to develop core competencies in engineering fundamentals (statics, strengths of materials, materials science, fluid dynamics, and electrical circuits), manufacturing applications (manufacturing processes, machining, welding, design for manufacturing and tooling, and quality assurance), mechanical design (computer-aided design, mechanisms, machine design, fluid power technology, measurement and test, etc.), and thermal sciences (thermodynamics, heat transfer, and heating, ventilation, and air conditioning). Extensive course work in the physical sciences and Mathematics is included.
Technical elective courses are chosen by the student in consultation with an academic advisor. Courses in the humanities and social sciences are also included. The overall curriculum is designed to provide the student with an ability to apply scientific and engineering knowledge and methods combined with technical skills in support of engineering activities.
Mechanical engineering technology (MET) is concerned with the application of scientific and engineering knowledge in support of engineering activities. Specifically, the mechanical engineering technologist provides the professional services needed in transforming the results of scientific endeavors into useful products and services. Students who choose a career in mechanical engineering technology may pursue any number of career paths including, but not limited to: machine and product design, product and system evaluation, research laboratory experimental support, prototype evaluation, plant operation and management, quality assurance, technical sales, manufacturing methods improvement, HVAC systems design and installation, project management, and energy exploration.
The mechanical engineering technologist's mission is to make necessary analysis and plans to convert design drawings into finished products in the most efficient and safe manner. He or she is the professional who produces design drawings and sets up and operates manufacturing equipment, handles inspections, analyzes production problems, and manages the implementation of improvement activities and projects.
The demand for the engineering technologist in general, and mechanical engineering technologists in particular, has been strong for the past several years, and average starting salaries are very competitive; indications are that this trend will continue. MSU Mechanical Engineering Technology graduates are actively recruited, and many of our alumni hold positions of considerable responsibility in industry and government.