Specializations

Mechanical EngineeringMechanical Systems/Design—This area encompasses the broad field of computer- aided design including design methodology and computer graphics, as well as kinematics and dynamics of machines, vibrations, design of machine elements, controls, automation, and techniques for assessing reliability. Current areas of research include nonlinear dynamics and vibrations, expert systems, machine tool calibration, control of robot vehicles, kinematic design and optimization, computer-aided design of control systems, structural health monitoring, damage state estimation and failure prognostics, precision machining, surface roughness analysis, and robot-assisted waterjet machining. Facilities include the Design and Automation Lab, Nonlinear Dynamics and Vibrations Lab, and Waterjet Machining Lab.

Fluid Mechanics—The fluid mechanics program includes advanced studies in laminar and turbulent flows, computational fluid dynamics, experimental methods, flows in micro-domains, flows with particulate matter, biological flow. Current areas of research include fluid flow and heat transfer in micro-domains, flow in human airways, computational fluid dynamics in irregular geometries, biological flows and lubrication, and numerical direct simulation flow modeling. Facilities include the Tribology and Fluid Mechanics Lab, Biofluids/Heat Transfer Lab, and Sensors and Surface Technology Lab.

Solid Mechanics—Studies in solid mechanics involve strength of materials, elasticity, plasticity, continuum mechanics, composite materials, fracture and fatigue, vibrations, wave propagation, computational methods, and micromechanics. Applications of these studies are applied to the mechanical and thermomechanical behavior of metals, composites, functionally graded materials, ceramics, and geological media under both static and dynamic loading conditions. A significant portion of our studies has been involved with micromechanical material behavior. Areas of current research include: behavior of materials under shock loading, dynamic fracture mechanics and material behavior, finite element modeling of biological materials, computational simulation of particulate composites, cellular and granular materials, fatigue crack growth, micromechanical behavior of composites, material erosion from abrasive waterjet processes. Facilities include the Dynamic Photomechanics Lab, Mechanics of Solids Lab, Optics and Lasers Laboratory, Waterjet Machining Lab.

Thermal Sciences—The area of thermal science includes studies of thermodynamics, conduction, convection and radiation heat transfer, pollution, and energy processes. Recent research has been involved with experimental and numerical modeling of cooling of circuit boards, micro/nanoscale energy transport, micro/nanoscale detection, imaging, and spectroscopy, nanoscale manufacturing, nanoscale energy conversion and storage, heat transfer and fluid flow in melting and solidification, micro heat transfer, aerosol transport in human respiratory flows, direct control heat transfer with phase change, computation of natural and forced convection in complex enclosures, energy system analysis including heating, ventilating, air conditioning, refrigeration, and electrical power systems. Facilities include the Fluid Mechanics/ Filtration Lab, Biofluid/Heat Transfer Lab, Energy Research Lab, Micro/Nano Engineering Lab, and Sensors and Surface Technology Lab.