Chemical Engineers work with catalysts to develop new ways to manufacture medicines and plastics; they develop control systems that enable the safe production of products from semiconductors to household soap; they design chemical and petroleum plants; they research the effects of artificial organs on blood flow; and they develop the equipment and processes necessary for advances in biotechnology. While chemistry emphasizes the facts and principles of science, chemical engineering emphasizes its practical application for the development of new products and processes.

The undergraduate program in Chemical Engineering provides students with fundamental skills in problem solving, analysis, and design, along with hands-on experience in practical applications. The curriculum builds upon the traditional foundation in the chemical and energy-related industries and introduces new material in the life sciences, polymers, and environmental fields. Students have numerous opportunities to pursue more specialized areas including formal options in Bioprocess and Biomolecular Engineering, Energy and Fuels, and Polymer Engineering.