The program educational objectives of the aerospace engineering curriculum are to enable graduates of the program to do the following:
- apply the physical, mathematical, and engineering sciences to professional practice or to advanced study in aerospace engineering or related fields;
- be cognizant of societal context and ethical responsibility in professional practice;
- function productively on teams and communicate ideas to both technical and non-technical audiences; and
- be agile, innovative, and adaptable in an increasingly diverse and global environment.
Opportunities for aerospace engineers will continue to expand within the military, civilian, and general aviation sectors spurred on by the development of new aircraft that extends to civilian supersonic aircraft and unmanned aerial vehicles. This growth in aircraft demand (as well as the need for higher efficiencies, longer ranges, and lower cost aircraft) is being fueled by the increasing global demand for air travel in the international marketplace. Space exploration has also entered a period of increased activity that includes an increased exploitation of satellites to service the demand for global communication, the need for low-cost assured access to space, the international space station, and planetary missions.
The technical focus of the B.S. program in aerospace engineering (AEE) is to develop a sound educational basis for the analysis and design of aerospace systems, with emphasis on the structure, aerodynamics, flight/orbital mechanics, and propulsion of aircraft and spacecraft systems. Aerospace engineering is a field constantly pushing the limits of technology. The B.S. AEE program stresses the fundamental physical, mathematical, and engineering principles that form the broadest base for future work in a fast-changing field.