The faculty and students in the program work on a range of problems focusing frequently on a mix of experimental understanding and characterization, theoretical modeling and simulation, numerical analysis, and modeling and simulation. These activities are supported through a broad range of experimental facilities including laboratories for computational fluid and solid mechanics and thermodynamics; micro-mechanics, fabrication and combustion; robotics and mechatronics; rapid solidification; thin films; x-ray diffraction and electron microscopy; atomic force microscopy; biomaterial and mechanotranduction; tissue and arterial mechanics; nontraditional manufacturing; dynamics and vibrations; nondestructive evaluation and ultrasonics; organic and nano-electronics; polymer composites and advanced fibers; polymer mechanics and 3D printing; power systems; surface mechanics and tribology; trauma mechanics.