Biomedical engineering is an interdisciplinary area in which engineering techniques are applied to problem solving in the life sciences and medicine. Biomedical engineers design medical instruments for diagnosis and the treatment of various diseases as well as for research in biology. Examples of instruments for diagnosis include electrocardiographs, electroencephalographs, automatic blood analyzers, and medical imaging systems such as X-ray imaging, radio-nuclide imaging, ultrasound imaging, computer-assisted tomography, and magnetic resonance imaging. Examples of instruments for treatment include radiotherapy machines, pacemakers, cardiac-assist devices, intelligent drug delivery systems, and lasers for surgery. Biomedical engineers develop artificial organs for prosthesis and computer software and hardware systems to help provide high-quality, cost-effective health care.Biomedical engineers are employed in the medical instrument industry, where they invent, design, manufacture, sell, and service medical equipment; hospitals, where they evaluate, select, maintain, and provide training for the use of complex medical equipment; and medical and biological research institutes, where they use unique analytical ability and instrumentation skills to conduct advanced research.URI’s biomedical engineering program combines study in the biological sciences with the areas of engineering that are particularly important for the application of modern technology to medicine. This curriculum is designed to provide students with not only a general background in biomedical engineering but also a special focus on the skills in electrical engineering necessary for developing medical devices. With a few minor elective changes, the program also satisfies the entrance requirements of most medical schools, but students who plan to go on to medical school should consult the premedical advisor and the coordinator of the biomedical engineering program.