Generally, the fields of chemical and biological engineering are extremely broad, and encompass all technologies and industries where chemical processing is utilized in any form. Students with baccalaureate (BS) Chemical Engineering degrees from Mines can find employment in many diverse fields, including: advanced materials synthesis and processing, product and process research and development, food and pharmaceutical processing and synthesis, biochemical and biomedical materials and products, microelectronics manufacturing, petroleum and petrochemical processing, and process and product design. Students in the Biological or Process Engineering tracks take 12 credits of technical and chemical engineering electives designed to provide additional focus in these areas. Alternatively students can earn their degree without being in a track, customizing their electives without any restrictions.? ?

The practice of chemical engineering draws from the fundamentals of biology, chemistry, mathematics, and physics. Accordingly, undergraduate students must initially complete a program of study that stresses these basic fields of science. Chemical engineering coursework blends these four disciplines into a series of engineering fundamentals relating to how materials are produced and processed both in the laboratory and in large industrial-scale facilities. Courses such as fluid mechanics, heat and mass transfer, thermodynamics, reaction kinetics, and chemical process control are at the heart of the chemical engineering curriculum at Mines. In addition, it is becoming increasingly important for engineers to understand how biological and microscopic, molecular-level properties can influence the macroscopic behavior of materials, biological, and chemical systems. This somewhat unique focus is first introduced at Mines through the physical and organic chemistry sequences, and the theme is continued and developed within the chemical engineering curriculum via material and projects introduced in advanced courses. Our undergraduate program at Mines is exemplified by intensive integration of computer-aided simulation and computer-aided process modeling in the curriculum and by our unique approach to teaching of the unit operations laboratory sequence. The unit operations lab course is offered only in the summer as a 6-week intensive session. Here, the fundamentals of heat, mass, and momentum transfer and applied thermodynamics are reviewed in a practical, applications-oriented setting. The important skills of teamwork, critical thinking, time management, and oral and written technical communications skills are also stressed in this course.

The Chemical and Biological Engineering Department offers the opportunity to begin work on a Master of Science (with or without thesis) degree while completing the requirements of the BS degree. These combined BS/MS degrees are designed to allow undergraduates engaged in research, or simply interested in furthering their studies beyond a BS degree, to apply their experience and interest to an advanced degree. Students may take graduate courses while completing their undergraduate degrees and count them towards their graduate degree.