Coursework fulfilling the ECE Emphasis Area credit hour requirement for the Ph.D in Engineering or M.S. in Engineering degree may be chosen from one or more of the areas below. Courses will be reviewed each academic year and updated as needed to reflect new areas in the field. This PhD in Engineering - Emphasis in Electrical and Computer Engineering is offered by The University of Georgia.
Track 1: Control SystemsTrack 2: Electronics & PhotonicsTrack 3: Cyber-physical Systems
Through this track, students can gain expertise in the analysis and design of controllers for complex, large scale systems. The need for improved safety and a cleaner environment have posed countless challenges that can only be addressed through the design and implementation of intelligent feedback controls. Numerous emerging applications for controls include cyber-physical systems (e.g., smart grids and intelligent transportation systems) and biological networks.
Students develop an understanding of the design and analysis of systems involving electromagnetic waves from RF electronics to photonic systems for signal processing and communication and optical systems for image capture and processing. High-speed communication and signal processing at gigabit speeds requires sophisticated electro-optic systems that must be understood at both the device and the systems level. Modern optical imaging systems use a wide variety of electrical and photonic technologies to achieve everything from imaging biological systems at the nanometer scale to imaging distant galaxies.
This track develops in students an understanding of engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will far exceed the simple embedded systems of today. CPS technology will transform the way people interact with engineered systems -- just as the Internet has transformed the way people interact with information. New smart CPS will drive innovation and competition in sectors such as agriculture, energy, transportation, building design and automation, healthcare, and manufacturing.